Thursday 12 July 2012

Some time away from PD to highlight two large bits of news from the Alzheimer's world


A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

  • Thorlakur Jonsson,
  • Jasvinder K. Atwal,
  • Stacy Steinberg,
  • Jon Snaedal,
  • Palmi V. Jonsson,
  • Sigurbjorn Bjornsson,
  • Hreinn Stefansson,
  • Patrick Sulem,
  • Daniel Gudbjartsson,
  • Janice Maloney,
  • Kwame Hoyte,
  • Amy Gustafson,
  • Yichin Liu,
  • Yanmei Lu,
  • Tushar Bhangale,
  • Robert R. Graham,
  • Johanna Huttenlocher,
  • Gyda Bjornsdottir,
  • Ole A. Andreassen,
  • Erik G. Jönsson,
  • Aarno Palotie,
  • Timothy W. Behrens,
  • Olafur T. Magnusson,
  • Augustine Kong,
  • Unnur Thorsteinsdottir
  • et al.
Nature (2012) doi:10.1038/nature11283
Received
  14 March 2012 
Accepted 06 June 2012
Published online
 11 July 2012


The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90. Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.



Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease

Randall J. Bateman, M.D., Chengjie Xiong, Ph.D., Tammie L.S. Benzinger, M.D., Ph.D., Anne M. Fagan, Ph.D., Alison Goate, Ph.D., Nick C. Fox, M.D., Daniel S. Marcus, Ph.D., Nigel J. Cairns, Ph.D., Xianyun Xie, M.S., Tyler M. Blazey, B.S., David M. Holtzman, M.D., Anna Santacruz, B.S., Virginia Buckles, Ph.D., Angela Oliver, R.N., Krista Moulder, Ph.D., Paul S. Aisen, M.D., Bernardino Ghetti, M.D., William E. Klunk, M.D., Eric McDade, M.D., Ralph N. Martins, Ph.D., Colin L. Masters, M.D., Richard Mayeux, M.D., John M. Ringman, M.D., Martin N. Rossor, M.D., Peter R. Schofield, Ph.D., D.Sc., Reisa A. Sperling, M.D., Stephen Salloway, M.D., and John C. Morris, M.D. for the Dominantly Inherited Alzheimer Network

New England Journal of Medicine
July 11, 2012 (10.1056/NEJMoa1202753)

BACKGROUND

The order and magnitude of pathologic processes in Alzheimer's disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimer's disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease.

METHODS

In this prospective, longitudinal study, we analyzed data from 128 participants who underwent baseline clinical and cognitive assessments, brain imaging, and cerebrospinal fluid (CSF) and blood tests. We used the participant's age at baseline assessment and the parent's age at the onset of symptoms of Alzheimer's disease to calculate the estimated years from expected symptom onset (age of the participant minus parent's age at symptom onset). We conducted cross-sectional analyses of baseline data in relation to estimated years from expected symptom onset in order to determine the relative order and magnitude of pathophysiological changes.

RESULTS

Concentrations of amyloid-beta (Aβ)42 in the CSF appeared to decline 25 years before expected symptom onset. Aβ deposition, as measured by positron-emission tomography with the use of Pittsburgh compound B, was detected 15 years before expected symptom onset. Increased concentrations of tau protein in the CSF and an increase in brain atrophy were detected 15 years before expected symptom onset. Cerebral hypometabolism and impaired episodic memory were observed 10 years before expected symptom onset. Global cognitive impairment, as measured by the Mini–Mental State Examination and the Clinical Dementia Rating scale, was detected 5 years before expected symptom onset, and patients met diagnostic criteria for dementia at an average of 3 years after expected symptom onset.

CONCLUSIONS

We found that autosomal dominant Alzheimer's disease was associated with a series of pathophysiological changes over decades in CSF biochemical markers of Alzheimer's disease, brain amyloid deposition, and brain metabolism as well as progressive cognitive impairment. Our results require confirmation with the use of longitudinal data and may not apply to patients with sporadic Alzheimer's disease. (Funded by the National Institute on Aging and others; DIAN ClinicalTrials.gov number, NCT00869817.)



No comments:

Post a Comment

Mild Parkinsonian Signs in a Community Population

One question that many of the PREDICT-PD participants ask me is “I am slower than I used to be, does it mean that I am getting Parkinson’...